
Serverless Applications with AWS SAM

—create auto-scaling web APIs
—handle background processes
—secure APIs
—inspect and monitor serverless applications
—manage deployments using AWS CloudFormation 

and AWS SAM
—design applications to get the most out of this 

new type of architecture
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Code/slides will be @ 
serverless.pub in a few days

Two-day coding workshop at Crisp 
28-29 March (www.crisp.se/kurser)

gojko@gojko.com @gojkoadzic
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Why serverless?

—time to market
—significant reduction for operational costs
—good when throughput is more critical than 

latency
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Why SAM?

—Rapidly maturing
—Provided by Amazon directly
—Integrated nicely with other Amazon dev tools
—Easy to extend (just CloudFormation under the 

hood)
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Billing actual usage,
not reserved capacity

—$0.0000002 per request
—$0.000000834 for 100ms @ 512MB
—First 1 million requests per month are free
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Code with batteries included

—Scaling
—Monitoring
—Recovery
—Versioning
—Logging
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SAM Basics: initialise a new app

sam init --runtime java8 
sam package ...
sam deploy ...
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"Time to recover"
no longer important
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Multi-versioning
is amazing
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It's not stateless, but
Share-nothing
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CloudFormation basics: infrastructure as code

—YAML/JSON template + links to project code 
—package uploads project code to S3 and updates 

deployment config
—deploy using transformed config, or upload, or 

give to CI...
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AWS SAM: means two things

—Transform: AWS::Serverless-2016-10-31 
—sam command line tool

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk



Transform: AWS::Serverless-2016-10-31

—adds new resources to CloudFormation
—implicitly creates IAM roles and event wiring
—reduces boilerplate code significantly

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk



SAM command line tool

—test locally using docker
—convenient templates for apps and events
—aliases/wrappers for common CloudFormation 

commands
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CF basics: create a deployable template

aws cloudformation package 
 --template-file <input template> 
 --output-template-file <deployable template>
 --s3-bucket <asset bucket>
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SAM extra: bundle source and dependencies cleanly

sam build
—for nodejs, python, go... (not yet Java)
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SAM extras: pack either main or built template

sam package
 --output-template-file <deployable template>
 --s3-bucket <asset bucket>
 # not necessary --template-file <input> 
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SAM extras: gradual deployment

DeploymentPreference:
 Type: Canary10Percent10Minutes 
 Alarms:
   - !Ref CheckForDropInSales 
   - !Ref CheckForDropInConversion
 Hooks:
   PreTraffic: !Ref ClearStatisticsLambda
   PostTraffic: !Ref NotifyAdminsLambda 
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gradual deployment options

—Canary10Percent30Minutes
—Canary10Percent5Minutes
—Canary10Percent10Minutes
—Canary10Percent15Minutes
—Linear10PercentEvery10Minutes
—Linear10PercentEvery1Minute
—Linear10PercentEvery2Minutes
—Linear10PercentEvery3Minutes
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CF basics: get stack resources

aws cloudformation describe-stack-resources
  --stack-name <stack name>
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CF basics: get stack outputs

aws cloudformation describe-stacks 
  --stack-name <stack name>
  --query 'Stacks[].Outputs[]'
  --output table
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SAM extras: run with API locally

sam local start-api
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SAM extras: read logs

sam logs -n <LAMBDA_FUNCTION_NAME>
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Talking to other AWS services

—set up IAM access policies
—use AWS SDK APIs with implicit authentication 

from Lambda
—use environment vars to pass references to 

resources
—use context.awsRequestId for unique-per-

request values
—consider timeouts
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SAM extras: generate sample events

sam local generate-event apigateway aws-proxy
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Give the platform
traditional server roles

—Gatekeeper ➤ Distributed Auth
—Scaling point ➤ Containers
—Orchestration ➤ Client or workflow engines
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Serverless authentication

—IAM: individual named (internal) services and 
users

—SIG V4: temporary request grants, using your 
credentials

—Cognito: anonymous and named (external) users, 
with own IAM policies
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Triggering lambdas from other sources

Events:
  FileUpload:
    Type: S3
    Properties:
      Bucket: !Ref UploadBucket
      Events: s3:ObjectCreated:*

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk



Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk



Two types of calls

—Synchronous: errors reported back
—Asynchronous: retry 3 times 
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Dead-letter queues

—fallback when Lambda gives up retrying
DeadLetterQueue:
  Type: SNS
  TargetArn: !Ref NotifyAdmins
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Service integration patterns

—SNS: transient, all consumers get everything, 
Lambdas auto-scaled

—Kinesis: persistent, sequential, guaranteed max 
one Lambda per shard

—SQS: persistent, compete with other consumers, 
Lambdas auto-scaled
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Lambda limits

—Max 15 minutes
—No way to keep open connections
—No sticky sessions
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Delegate for better latency/length

—Fargate (run autoscale containers but pay per 
usage)

—Step functions (run programmable workflows for 
up to 1 year)
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How to protect against abuse?

—set usage alerts with Cloudwatch
—set API usage plans (with keys)
—set Lambda concurrency limits (per function/per 

account)

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk



SAM Benefits

—Atomic deployments for multiple resources
—Version control for infrastructure/wiring
—Integration with AWS code deployment services
—One-click deploy once it's polished
—Local docker-based testing
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SAM Downsides

—Very fiddly with templates/transformes
—"Magic" YAML
—No knowledge about platform packaging (NPM)
—No knowledge of language-specific validation 
—Good for complex stuff, but painful for simple 

tasks
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Strengths

—Time to deploy minimal
—Time to recover irrelevant
—Multi-versioned
—Forces small, isolated code modules
—Fine-grained, transparent, cost of operation
—Use readily-available services built for massive 

scale
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Weaknesses

—Non-deterministic Latency
—"Only" 99.95% SLA
—No way to keep open connections
—Requires complete rethink on many common 

practices
—Configuration becomes a challenge
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Opportunities

—Skip a generation of technology/process 
upgrades

—Rethink architectural and operational "best 
practices"

—Change billing models
—Marketplaces for digital services
—Fine-grained monitoring and optimisation
—A/B testing throughout 
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