— create auto-scaling web APIs

— handle background processes

—secure APIs

— inspect and monitor serverless applications

— manage deployments using AWS CloudFormation
and AWS SAM

— design applications to get the most out of this
new type of architecture

Code/slides will be @
serverless.pub In a few days

gojko@gojko.com @gojkoadzic

— time to market

— significant reduction for operational costs

— good when throughput is more critical than
latency

— Rapidly maturing

— Provided by Amazon directly

— Integrated nicely with other Amazon dev tools

— Easy to extend (just CloudFormation under the
hood)

— $0.0000002 per request
—$0.000000834 for 100ms @ 512MB
— First 1 million requests per month are free

— Scaling

— Monitoring
— Recovery
— Versioning

— Logging

SAM Basics: initialise a new app

sam 1nit —--runtime java8
sam package ...
sam deploy ...

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

Gateway

Lambda

no longer important

Multi-versioning

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

It's not stateless, but

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

— YAML/JSON template + links to project code

— package uploads project code to S3 and updates
deployment config

— deploy using transformed config, or upload, or
give to CI...

— Transform: AWS: :Serverless-2016-10-31
— sam command line tool

— adds new resources to CloudFormation
— implicitly creates IAM roles and event wiring
—reduces boilerplate code significantly

—test locally using docker

— convenient templates for apps and events

— aliases/wrappers for common CloudFormation
commands

CF basics: create a deployable template

aws cloudformation package
-—template-file <input template>
-—output-template-file <deployable template>
--s3-bucket <asset bucket>

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

SAM extra: bundle source and dependencies cleanly

sam build

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

SAM extras: pack either main or built template

sam package
-—output-template-file <deployable template>
--s3-bucket <asset bucket>

not necessary —-—-template-file <input>

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

ACTION VERSION ALIASES

create $SLATEST =1
update $SLATEST =2
update --version prod $LATEST = 3, prod = 3

update --version dev $LATEST =4, prod = 3
dev =4

set-version --version prod SLATEST =4, p(;od = 2
ev =

SAM extras: gradual deployment

DeploymentPreference:

Type:
Alarms:

Hooks:
PreTraffic:
PostTraffic:

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

— Canary10Percent30Minutes

— Canary10Percent5Minutes

— Canary10Percent10Minutes

— Canary10Percent15Minutes

— Linear10PercentEvery10Minutes
— Linear10PercentEvery1Minute

— Linear10PercentEvery2Minutes
— Linear10PercentEvery3Minutes

CF basics: get stack resources

aws cloudformation describe-stack-resources
—--stack—-name <stack name>

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

CF basics: get stack outputs

aws cloudformation describe-stacks
-—-stack—-name <stack name>
-—query 'Stacks|[].Outputs][]’
-—output table

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

SAM extras: run with API locally

sam local start-api

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

SAM extras: read logs

sam logs —-n <LAMBDA_FUNCTION_NAME>

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

S3
Lambda Bucket

Gateway

—set up IAM access policies
— use AWS SDK APIs with implicit authentication

from Lambda

— use environment vars to pass references to
resources

—use context.awsRequestId for uniqgue-per-
request values

— consider timeouts

SAM extras: generate sample events

sam local generate-event apigateway aws-proxy

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

— Gatekeeper » Distributed Auth
— Scaling point » Containers
— Orchestration > Client or workflow engines

— |AM: individual named (internal) services and
users

— SIG V4: temporary request grants, using your
credentials

— Cognito: anonymous and named (external) users,
with own IAM policies

API

Gateway

>

Al

\
[

[

[

L

<

.~

Lambda

Generate |

Auth signature ;

Triggering lambdas from other sources

Events:
F1leUpload:

Type:
Properties:

Bucket:
Events: s3:0bjectCreated: x

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

— Synchronous: errors reported back
— Asynchronous: retry 3 times

— fallback when Lambda gives up retrying

— SNS: transient, all consumers get everything,
Lambdas auto-scaled

— Kinesis: persistent, sequential, guaranteed max
one Lambda per shard

— SQS: persistent, compete with other consumers,
Lambdas auto-scaled

— Max 15 minutes
— No way to keep open connections
— No sticky sessions

— Fargate (run autoscale containers but pay per
usage)

— Step functions (run programmable workflows for
up to 1 year)

— set usage alerts with Cloudwatch

— set APl usage plans (with keys)

— set Lambda concurrency limits (per function/per
account)

— Atomic deployments for multiple resources

— Version control for infrastructure/wiring

— Integration with AWS code deployment services
— One-click deploy once it's polished

— Local docker-based testing

— Very fiddly with templates/transformes

— "Magic" YAML

— No knowledge about platform packaging (NPM)

— No knowledge of language-specific validation

— Good for complex stuff, but painful for simple
tasks

— Time to deploy minimal

— Time to recover irrelevant

— Multi-versioned

— Forces small, isolated code modules

— Fine-grained, transparent, cost of operation

— Use readily-available services built for massive
scale

— Non-deterministic Latency

— "Only" 99.95% SLA

— No way to keep open connections

— Requires complete rethink on many common
practices

— Configuration becomes a challenge

— Skip a generation of technology/process
upgrades

— Rethink architectural and operational "best
practices”

— Change billing models

— Marketplaces for digital services

— Fine-grained monitoring and optimisation

— A/B testing throughout

