
Serverless Applications with AWS SAM

—create auto-scaling web APIs
—handle background processes
—secure APIs
—inspect and monitor serverless applications
—manage deployments using AWS CloudFormation

and AWS SAM
—design applications to get the most out of this

new type of architecture
Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

Code/slides will be @
serverless.pub in a few days

Two-day coding workshop at Crisp
28-29 March (www.crisp.se/kurser)

gojko@gojko.com @gojkoadzic

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

Why serverless?

—time to market
—significant reduction for operational costs
—good when throughput is more critical than

latency

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

Why SAM?

—Rapidly maturing
—Provided by Amazon directly
—Integrated nicely with other Amazon dev tools
—Easy to extend (just CloudFormation under the

hood)

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

Billing actual usage,
not reserved capacity

—$0.0000002 per request
—$0.000000834 for 100ms @ 512MB
—First 1 million requests per month are free

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

Code with batteries included

—Scaling
—Monitoring
—Recovery
—Versioning
—Logging

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

SAM Basics: initialise a new app

sam init --runtime java8
sam package ...
sam deploy ...

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

"Time to recover"
no longer important

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

Multi-versioning
is amazing

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

It's not stateless, but
Share-nothing

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

CloudFormation basics: infrastructure as code

—YAML/JSON template + links to project code
—package uploads project code to S3 and updates

deployment config
—deploy using transformed config, or upload, or

give to CI...

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

AWS SAM: means two things

—Transform: AWS::Serverless-2016-10-31
—sam command line tool

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

Transform: AWS::Serverless-2016-10-31

—adds new resources to CloudFormation
—implicitly creates IAM roles and event wiring
—reduces boilerplate code significantly

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

SAM command line tool

—test locally using docker
—convenient templates for apps and events
—aliases/wrappers for common CloudFormation

commands

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

CF basics: create a deployable template

aws cloudformation package
 --template-file <input template>
 --output-template-file <deployable template>
 --s3-bucket <asset bucket>

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

SAM extra: bundle source and dependencies cleanly

sam build
—for nodejs, python, go... (not yet Java)

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

SAM extras: pack either main or built template

sam package
 --output-template-file <deployable template>
 --s3-bucket <asset bucket>
 # not necessary --template-file <input>

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

SAM extras: gradual deployment

DeploymentPreference:
 Type: Canary10Percent10Minutes
 Alarms:
 - !Ref CheckForDropInSales
 - !Ref CheckForDropInConversion
 Hooks:
 PreTraffic: !Ref ClearStatisticsLambda
 PostTraffic: !Ref NotifyAdminsLambda
Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

gradual deployment options

—Canary10Percent30Minutes
—Canary10Percent5Minutes
—Canary10Percent10Minutes
—Canary10Percent15Minutes
—Linear10PercentEvery10Minutes
—Linear10PercentEvery1Minute
—Linear10PercentEvery2Minutes
—Linear10PercentEvery3Minutes
Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

CF basics: get stack resources

aws cloudformation describe-stack-resources
 --stack-name <stack name>

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

CF basics: get stack outputs

aws cloudformation describe-stacks
 --stack-name <stack name>
 --query 'Stacks[].Outputs[]'
 --output table

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

SAM extras: run with API locally

sam local start-api

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

SAM extras: read logs

sam logs -n <LAMBDA_FUNCTION_NAME>

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

Talking to other AWS services

—set up IAM access policies
—use AWS SDK APIs with implicit authentication

from Lambda
—use environment vars to pass references to

resources
—use context.awsRequestId for unique-per-

request values
—consider timeouts
Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

SAM extras: generate sample events

sam local generate-event apigateway aws-proxy

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

Give the platform
traditional server roles

—Gatekeeper ➤ Distributed Auth
—Scaling point ➤ Containers
—Orchestration ➤ Client or workflow engines

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

Serverless authentication

—IAM: individual named (internal) services and
users

—SIG V4: temporary request grants, using your
credentials

—Cognito: anonymous and named (external) users,
with own IAM policies

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

Triggering lambdas from other sources

Events:
 FileUpload:
 Type: S3
 Properties:
 Bucket: !Ref UploadBucket
 Events: s3:ObjectCreated:*

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

Two types of calls

—Synchronous: errors reported back
—Asynchronous: retry 3 times

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

Dead-letter queues

—fallback when Lambda gives up retrying
DeadLetterQueue:
 Type: SNS
 TargetArn: !Ref NotifyAdmins

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

Service integration patterns

—SNS: transient, all consumers get everything,
Lambdas auto-scaled

—Kinesis: persistent, sequential, guaranteed max
one Lambda per shard

—SQS: persistent, compete with other consumers,
Lambdas auto-scaled

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

Lambda limits

—Max 15 minutes
—No way to keep open connections
—No sticky sessions

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

Delegate for better latency/length

—Fargate (run autoscale containers but pay per
usage)

—Step functions (run programmable workflows for
up to 1 year)

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

How to protect against abuse?

—set usage alerts with Cloudwatch
—set API usage plans (with keys)
—set Lambda concurrency limits (per function/per

account)

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

SAM Benefits

—Atomic deployments for multiple resources
—Version control for infrastructure/wiring
—Integration with AWS code deployment services
—One-click deploy once it's polished
—Local docker-based testing

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

SAM Downsides

—Very fiddly with templates/transformes
—"Magic" YAML
—No knowledge about platform packaging (NPM)
—No knowledge of language-specific validation
—Good for complex stuff, but painful for simple

tasks

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

Strengths

—Time to deploy minimal
—Time to recover irrelevant
—Multi-versioned
—Forces small, isolated code modules
—Fine-grained, transparent, cost of operation
—Use readily-available services built for massive

scale

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

Weaknesses

—Non-deterministic Latency
—"Only" 99.95% SLA
—No way to keep open connections
—Requires complete rethink on many common

practices
—Configuration becomes a challenge

Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

Opportunities

—Skip a generation of technology/process
upgrades

—Rethink architectural and operational "best
practices"

—Change billing models
—Marketplaces for digital services
—Fine-grained monitoring and optimisation
—A/B testing throughout
Copyright: Gojko Adzic 2019, https://gojko.net, gojko@neuri.co.uk

